Home | MATHS | Lectures In Basic Computational Numerical Analysis

Lectures In Basic Computational Numerical Analysis

Lectures In Basic Computational Numerical Analysis
   Added On :  03.06.2016 01:57 pm
   Author :  J. M. McDonough

LECTURES IN BASIC COMPUTATIONAL NUMERICAL ANALYSIS - By J. M. McDonough ( Departments of Mechanical Engineering and Mathematics, University of Kentucky).


Contents
1 Numerical Linear Algebra 1
1.1 Some Basic Facts from Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Solution of Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Numerical solution of linear systems: direct elimination . . . . . . . . . . . . 5
1.2.2 Numerical solution of linear systems: iterative methods . . . . . . . . . . . . 16
1.2.3 Summary of methods for solving linear systems . . . . . . . . . . . . . . . . . 24
1.3 The Algebraic Eigenvalue Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.1 The power method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.2 Inverse iteration with Rayleigh quotient shifts . . . . . . . . . . . . . . . . . . 29
1.3.3 The QR algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.4 Summary of methods for the algebraic eigenvalue problem . . . . . . . . . . . 31
1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2 Solution of Nonlinear Equations 33
2.1 Fixed-Point Methods for Single Nonlinear Equations . . . . . . . . . . . . . . . . . . 33
2.1.1 Basic fixed-point iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.2 Newton iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2 Modifications to Newton?s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.1 The secant method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.2 The method of false position . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3 Newton?s Method for Systems of Equations . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.1 Derivation of Newton?s Method for Systems . . . . . . . . . . . . . . . . . . . 41
2.3.2 Pseudo-language algorithm for Newton?s method for systems . . . . . . . . . 43
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3 Approximation Theory 45
3.1 Approximation of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.1 The method of least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.2 Lagrange interpolation polynomials . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.3 Cubic spline interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.4 Extraplotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 Numerical Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.1 Basic Newton?Cotes quadrature formulas . . . . . . . . . . . . . . . . . . . . 60
3.2.2 Gauss?Legendre quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.3 Evaluation of multiple integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3 Finite-Difference Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.2 Use of Taylor series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.3 Partial derivatives and derivatives of higher order . . . . . . . . . . . . . . . . 70
3.3.4 Differentiation of interpolation polynomials . . . . . . . . . . . . . . . . . . . 71
3.4 Richardson Extrapolation Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5 Computational Test for Grid Function Convergence . . . . . . . . . . . . . . . . . . . 73
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4 Numerical Solution of ODEs 77
4.1 Initial-Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1.1 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1.2 Basic Single-Step Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.1.3 Runge?Kutta Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.1.4 Multi-Step and Predictor-Corrector, Methods . . . . . . . . . . . . . . . . . . 94
4.1.5 Solution of Stiff Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 Boundary-Value Problems for ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.1 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.2 Shooting Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2.3 Finite-Difference Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3 Singular and Nonlinear Boundary-Value Problems . . . . . . . . . . . . . . . . . . . 108
4.3.1 Coordinate Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.2 Iterative Methods for Nonlinear BVPs . . . . . . . . . . . . . . . . . . . . . . 110
4.3.3 The Galerkin Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5 Numerical Solution of PDEs 119
5.1 Mathematical Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.1.1 Classification of Linear PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.1.2 Basic Concept of Well Posedness . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2 Overview of Discretization Methods for PDEs . . . . . . . . . . . . . . . . . . . . . . 122
5.3 Parabolic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.1 Explicit Euler Method for the Heat Equation . . . . . . . . . . . . . . . . . . 124
5.3.2 Backward-Euler Method for the Heat Equation . . . . . . . . . . . . . . . . . 128
5.3.3 Second-Order Approximations to the Heat Equation . . . . . . . . . . . . . . 130
5.3.4 Peaceman?Rachford Alternating-Direction-Implicit Scheme . . . . . . . . . . 136
5.4 Elliptic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.4.1 Successive Overrelaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.4.2 The Alternating-Direction-Implicit Scheme . . . . . . . . . . . . . . . . . . . 148
5.5 Hyperbolic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.5.1 The Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.5.2 First-Order Hyperbolic Equations and Systems . . . . . . . . . . . . . . . . . 155
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
References 160

Tags : Book Lectures In Basic Computational Numerical Analysis Pdf download Book Lectures In Basic Computational Numerical Analysis by J. M. McDonough Pdf download Author J. M. McDonough written the book namely Lectures In Basic Computational Numerical Analysis Author J. M. McDonough Pdf download Study material of Lectures In Basic Computational Numerical Analysis Pdf download Lacture Notes of Lectures In Basic Computational Numerical Analysis Pdf
Last 30 days 421 reviews Anna University Engineering B.E., MBA study material and Notes Download
MBBS, B.Sc, Nursing, B.Pharm study material and Notes Download

​TOP MENU